13-1A Trigonometric Identities

Trigonometric Identity: an equation involving trigonometric functions that is true for all values for which every expression in the equation is defined.

Trigonometric Identities		
Quotient Identities		
Reciprocal Identities		
Pythagorean Identities		

Trigonometric Identities - prove it!

Quotient Identities

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Trigonometric Identities - prove it! Reciprocal Identities

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sec\theta = \frac{1}{\cos\theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

Trigonometric Identities - prove it! Pythagorean Identities

$$\cos^2\theta + \sin^2\theta = 1$$

$$\tan^2 \theta + 1 = \sec^2 \theta$$

$$\cot^2 \theta + 1 = \csc^2 \theta$$

Using trig. identities to find a value

1. Find $\tan\theta$ if $\sec\theta = -2$ and $180^{\circ} < \theta < 270^{\circ}$

2. Find $\sin\theta$ if $\cos\theta = 1/2$ and $270^{\circ} < \theta < 360^{\circ}$

3. Find $\csc\theta$ if $\cos\theta = 2/3$ and $90^{\circ} < \theta < 270^{\circ}$

How to use trigonometric identities to find exact trig. values

- Determine which trig. identity/identities to use.
 - -
 - _
 - -
- Use the trig. identity/identities as formulas.
- Use substitution and solve.
- Determine the sign of the trig. value based on the quadrant.