## 13-1B Trigonometric Identities

Using trig. identities to simplify an expression:

- Look for a direct relationship between trigonometric functions and relationships between inverse trigonometric functions.
- Simplify by replacing trigonometric functions with identities.
- Expressions will usually simplify to a numeric value OR a single trigonometric function.


$\theta=30^{\circ}$

$(\csc 30)(\cos 30)(\tan 30)$

$$
\frac{2}{1}\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{3}\right)=\frac{3}{3}=
$$

3. csc $\theta \tan \theta$

$$
\begin{aligned}
& \frac{1}{\sin \theta} \cdot \frac{\sin \theta}{\cos \theta} \\
& \frac{1}{\cos t} \\
& \sec \theta
\end{aligned}
$$

$$
\tan ^{2} \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}
$$

$$
\begin{aligned}
& (\csc \theta)^{2}=\left(\frac{1}{\sin \theta}\right)^{2} \\
& \csc \theta=\frac{1}{\sin ^{2} \theta}
\end{aligned}
$$

4. $\frac{\csc ^{2} \theta+\cot ^{2} \theta}{1-\cos ^{2} \theta}$

$$
\overline{\sin ^{2} \theta}
$$



$$
\begin{gathered}
\frac{\csc ^{2} \theta}{1-\cos ^{2} \theta}-\frac{\cot ^{2} \theta}{1-\cos ^{2} \theta} \\
\frac{\csc ^{2} \theta}{\sin ^{2} \theta}-\frac{\cot ^{2} \theta}{\sin ^{2} \theta} \\
\frac{\frac{1}{\sin ^{2} \theta}}{\sin ^{2} \theta}-\frac{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}{\sin ^{2} \theta} \\
\frac{1}{\operatorname{cin}^{2} \theta} \div \sin ^{2} \theta \\
\frac{1}{\cos ^{2} \theta} \div \frac{1}{\sin ^{2} \theta}+\frac{\sin ^{2} \theta}{\sin ^{2} \theta} \cdot \frac{\sin ^{2} \theta}{\sin ^{2} \theta} \theta \frac{1}{\sin ^{4} \theta}-\frac{\cos ^{2} \theta}{\sin ^{4} \theta} \\
\frac{1-\cos ^{2} \theta}{\sin ^{4} \theta} \\
\frac{\sin ^{2} \theta}{\sin ^{4} \theta}=\frac{1}{\sin ^{2} \theta} \\
\csc \cos ^{2} \theta
\end{gathered}
$$

## 13-1B Worksheet

