7-2A Solving Exponential Equations \& Inequalities
Properties of Exponents Review

- $a^{m}\left(a^{n}\right)=a^{m+n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $a^{m}(a)^{-n}=\frac{a^{m}}{a^{n}}=a^{m-n}$

Solving Exponential Equations
Exponential Equation: an equation where the variable occurs as the exponent.
S. KeyConcept Property of Equality for Exponential Functions

Words
Let $b>0$ and $b \neq 1$. Then $b^{x}=b^{y}$ if and only if
Example
(43) $-\left(3^{5}\right.$ men $x=5$

Solve.
$3^{-10} \stackrel{?}{=} 9^{-5}$

1. $4^{9 n-2}=256$
$4^{9 n-2}=4^{4}$

$$
\text { 3. } \begin{aligned}
&\left(\frac{1}{9}\right)^{3 c+1}=27^{3 c-1} \\
&\left(\frac{1}{3^{2}}\right)^{3 c+1}=\left(3^{3}\right)^{3 c-1} \\
& 3 c-1
\end{aligned}
$$

$$
a_{n}-2=4
$$

$$
\begin{array}{rl}
9 n & =6 \\
n & 9
\end{array}
$$

$$
\begin{aligned}
& \left(3^{-2}\right)^{3 c+1}=\left(3^{3}\right)^{3 c-1} \\
& 3^{-6 c-2}=3^{9 c-3}
\end{aligned}
$$

$$
n=\frac{2 / 3}{3}
$$

$$
\begin{aligned}
& \text { 2. } 3^{5 x}=9^{2 x-1} \\
& 3^{5 x}=\left(3^{2 x-1}\right. \\
& 3^{5 x}=3^{4 x-2} \\
& 5 x=4 x-2 \\
& x=-2
\end{aligned}
$$

$$
-6 c-2=9 c-3
$$

Solving Exponential Inequalities
Exponential Inequality: an inequality involving exponential functions.

KeyConcept Property of Inequality for Exponential Functions
Words Let $b>1$. Then $b^{x}>b^{y}$ if and only if $x>y$, and $b^{x}<b^{y}$ if and only if $x<y$.
Example If $2^{x}>2^{6}$, then $x>6$. M
Solve.
4. $5^{3-2 x}>\frac{1}{625}$
5. $16^{3 x+1}<8$

$$
\begin{gathered}
\underline{5}^{3-2 x}>5^{-4} \\
3-2 x>-4 \\
\frac{-2 x}{-2}>\frac{-7}{2} \\
x \frac{7}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \left(2^{4 x+1}<2^{3}\right. \\
& 2^{12 x+4}<2^{3}
\end{aligned}
$$

$$
12 x+4<3
$$

Compound Interest: when interest is paid on the principal of an investment AND any previous earned interest.

KeyConcept Compound Interest
You can calculate compound interest using the following formula.

$$
A=P\left(1+\frac{r}{n}\right)^{m t}
$$

where A is the amount in the account after t years, P is the principal amount invested, r is the annual interest rate, and n is the number of compounding periods each year.

$$
\begin{aligned}
& \text { annually, } n=1 \\
& \text { semi-ann bul, } n=2 \\
& \text { quarbey } 4=n
\end{aligned}
$$

Solve.
6. An investment account pays 5.4% annual interest compounded quarterly. If $\$ 4,000$ is deposited into the account initially, what is the balance of the account after 8 years?

$$
\begin{aligned}
& \text { the account a offer } 8 \text { years? } \\
& \left.y=4,050041+\frac{.54}{4}\right)^{8(4)} \\
& y=4000(1.0135)^{32} \\
& y=140001.5358 \\
& y=1.143 .56
\end{aligned}
$$

$$
\begin{aligned}
& P .464,465 \\
& 10-14 e \\
& 20-28 e \\
& 32-36 e
\end{aligned}
$$

